University of Ioannina Department of Materials Science & Engineering Computational Materials Science Laboratory

Multi-physics and multi-scale modeling of optoelectronic materials and devices

Elefterios Lidorikis and Dimitrios Papageorgiou Computational Materials Science Laboratory Materials Science & Engineering, University of Ioannina, Greece

Computation of optoelectronic materials & devices

- Properties of materials
 - Optical, electrical, thermal
- Physical interactions
 - Optical: absorption, scattering, interference
 - Electrical: carrier excitation, drift-diffusion
 - Thermal: transfer, currents
- Design and optimization of applications
 - Photovoltaics, LEDs, photodetectors, sensors, waveguides, modulators

Application – architecture - interactions

organic photovoltaics

graphene optoelectronics

Si/SiN photonics-plasmonics

Application – architecture - interactions

Application – architecture - interactions

data analysis

photonic/plasmonic propagation

photo-thermo-electric excitations

Transport in organic semiconductors

• Amorphous organic materials → weak intermolecular interactions

charge transport proceeds by thermally activated hopping

high temperature limit of Marcus theory $\omega_{ij} = \frac{2\pi}{\hbar} \frac{J_{ij}^2}{\sqrt{4\pi k_B T \lambda_{ii}}} exp \left[-\frac{\left(\Delta E_{ij} - \lambda_{ij}\right)^2}{4k_B T \lambda_{ij}} \right]$

Multiscale modelling overview

• Disordered organic molecules -> large computational cells

Density functional theory:
molecular deformation, interaction and ionization energies

Transport parameters for PC₇₀BM and PCDTBT

Electrostatic phenomena in organic semiconductors

A INSTITUTE OF MATERIALS SCIENCE AND COMPUTING

Mobility dependence on temperature and field

Arrhenius-like law fitted

Poole-Frenkel field dependence

K. Kaklamanis et al., in preparation

New EU project "MUSICODE" (2021-2024)

Create an Open Innovation Platform for Materials Modelling

Graphene optoelectronics

Example: plasmonic IR graphene photodetector

Reverse-biased G/nSi Schottky MIR photodetector

•

Other graphene devices of interest

Integrated unbiased graphene photothermoelectric detector (Vangelidis et al., in preparation) Chemical sensing by graphene nanoribbon plasmons (Doukas et al., in preparation) Free-space graphene modulator (Doukas et al., APL 113, 011102 (2018))

Acknowledgements

The team:

- Prof. Dimitrios Papageorgiou
- Prof. Christina Lekka
- Dr. Dimitiris Bellas
- Dr. Pablo Palomino
- Ioannis Vangelidis
- Spyros Doukas
- Alva Dagkli
- Maria Andrea
- Konstantinos Kaklamanis
- Konstantinos Kordos
- Alexis Kotanidis
- Eleftheria Lampadariou
- Charalampos Trapalis

Close collaborators:

GRAPHENE FLAGSHIP

